skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Rydal Shapiro, Ben"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. This work contributes to just and pro-social treatment of digital pieceworkers ("crowd collaborators") by reforming the handling of crowd-sourced labor in academic venues. With the rise in automation, crowd collaborators' treatment requires special consideration, as the system often dehumanizes crowd collaborators as components of the “crowd” [41]. Building off efforts to (proxy-)unionize crowd workers and facilitate employment protections on digital piecework platforms, we focus on employers: academic requesters sourcing machine learning (ML) training data. We propose a cover sheet to accompany submission of work that engages crowd collaborators for sourcing (or labeling) ML training data. The guidelines are based on existing calls from worker organizations (e.g., Dynamo [28]); professional data workers in an alternative digital piecework organization; and lived experience as requesters and workers on digital piecework platforms. We seek feedback on the cover sheet from the ACM community 
    more » « less
  2. null (Ed.)
    In this paper, we describe and analyze a workshop developed for a work training program called DataWorks. In this workshop, data workers chose a topic of their interest, sourced and processed data on that topic, and used that data to create presentations. Drawing from discourses of data literacy; epistemic agency and lived experience; and critical race theory, we analyze the workshops’ activities and outcomes. Through this analysis, three themes emerge: the tensions between epistemic agency and the context of work, encountering the ordinariness of racism through data work, and understanding the personal as communal and intersectional. Finally, critical race theory also prompts us to consider the very notions of data literacy that undergird our workshop activities. From this analysis, we ofer a series of suggestions for approaching designing data literacy activities, taking into account critical race theory. 
    more » « less